Aggregate Skyline Join Queries: Skylines with Aggregate Operations over Multiple Relations

نویسندگان

  • Arnab Bhattacharya
  • B. Palvali Teja
چکیده

The multi-criteria decision making, which is possible with the advent of skyline queries, has been applied in many areas. Though most of the existing research is concerned with only a single relation, several real world applications require finding the skyline set of records over multiple relations. Consequently, the join operation over skylines where the preferences are local to each relation, has been proposed. In many of those cases, however, the join often involves performing aggregate operations among some of the attributes from the different relations. In this paper, we introduce such queries as “aggregate skyline join queries”. Since the naı̈ve algorithm is impractical, we propose three algorithms to efficiently process such queries. The algorithms utilize certain properties of skyline sets, and processes the skylines as much as possible locally before computing the join. Experiments with real and synthetic datasets exhibit the practicality and scalability of the algorithms with respect to the cardinality and dimensionality of the relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiently Evaluating Skyline Queries on RDF Databases

Skyline queries are a class of preference queries that compute the pareto-optimal tuples from a set of tuples and are valuable for multi-criteria decision making scenarios. While this problem has received significant attention in the context of single relational table, skyline queries over joins of multiple tables that are typical of storage models for RDF data has received much less attention....

متن کامل

Aggregate-join Query processing in parallel database systems - High Performance Computing in the Asia-Pacific Region, 2000. Proceedings. The Fourth International

Queries containing aggregate functions o f e n combine multiple tables through join operations. We call these queries "Aggregate-Join" queries. In parallel processing of such queries, it must be decided which attribute to be used as a partitioning attribute, particularly join attribute or group-by attribute. Based on the partitioning attribute, we discuss three parallel aggregate-join query pro...

متن کامل

Skyline Evaluation Within Join Operation, Block Nested Loop Join Implementation

Skyline Join approach in its Naïve age work as it computes join first and then apply skyline computation to find corresponding skyline objects. Considering increase in cardinality and dimensionality of join table the cost of computing skyline in a non-reductive join relation is costlier than that of on single table. Most of the existing work on skyline queries for databases mainly discusses the...

متن کامل

Semi-Skylines and Skyline-Snippets

Skyline evaluation techniques (also known as Pareto preference queries) follow a common paradigm that eliminates data elements by finding other elements in the data set that dominate them. To date already a variety of sophisticated skyline evaluation techniques are known, hence skylines are considered a well researched area. Nevertheless, in this paper we come up with interesting new aspects. O...

متن کامل

UNIVERSITÄT AUGSBURG Semi-Skylines and Skyline Snippets

Skyline evaluation techniques (also known as Pareto preference queries) follow a common paradigm that eliminates data elements by finding other elements in the data set that dominate them. To date already a variety of sophisticated skyline evaluation techniques are known, hence skylines are considered a well researched area. Nevertheless, in this paper we come up with interesting new aspects. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010